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Abstract—Data intensive applications increasingly make use
of multiple data stores in the cloud, providing a diversity of
data and query models, as well as durability and scale trade-
offs. However, this has a severe impact on reliability, as the
key fault-tolerance mechanism for database systems, i.e. ACID
transactions, is no longer available. Although it is possible to
implement transactions without changes to the database servers,
this either requires a proxy server, which compromises scale and
availability, or a client-side layer that changes the data schema,
excludes legacy applications, and adds significant overhead. We
address this challenge with a proposal to delegate functionality
from a client-side transactional layer to a server-side query engine
such that compatibility with legacy applications is restored. We
implemented a proof-of-concept and show that it significantly
improves performance for analytical applications.

Index Terms—Transactions, cloud computing, database sys-
tems, replication.

I. INTRODUCTION

Cloud computing has profoundly changed the way database
systems are built and used by data-intensive applications. In
contrast to using a traditional SQL database system, there is
now a diversity of data storage options, and applications often
use a combination of them [1]. This has a profound impact
on dependability, as transactional ACID guarantees in both
standalone and replicated database servers have long been the
foundation for recoverability and high availability [2]. This
is particularly worrisome, as cloud databases are increasingly
sought for data-centric applications even in critical infrastruc-
tures, such as smart grids and self-driving vehicles, where data
inconsistency cannot be tolerated.

Initial proposals for cloud native database systems that
focused on scalability and performance did not provide ACID
transactions [3]. This made it harder to develop reliable general
applications and even to operate analytical applications [4].
Eventually, new cloud-native database systems that offer ACID
transactions were proposed [5]. However, this does not solve
the problem for applications that use multiple data stores for
different purposes, as these systems do not provide the stan-
dard API for two-phase commit distributed transactions [6].

There have been several proposals to address this problem
(see Section II). On the one hand, the Cherry Garcia proto-
col [7], used in ScalarDB [8], provides multi-database atomic
transactions over systems that have only single-item atomicity.
However, it severely limits direct usage of the underlying
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database systems, namely, for analytical workloads. On the
other hand, TiQuE [9], [10] is compatible with the original
applications and analytical workloads, but requires server-side
SQL support and a centralized proxy, which limits scalability
and availability. This is important, as there is an increas-
ing demand for Hybrid Transactional Analytical Processing
(HTAP) [11], [12].

We address this challenge with a proposal for a cloud
transactional architecture that combines the advantages of both
approaches (Section III). It allows client-side transactions over
a diversity of systems, even if they do not natively support
transactions, while at the same time exploiting server-side SQL
support where available to improve the performance and com-
patibility of analytical applications. We implement a proof-
of-concept of this approach in ScalarDB [8] and evaluate it
experimentally with simple transactional and analytical work-
loads (Section IV). Section V discusses the lessons learned
towards better support for transactions in multi-database cloud
applications.

II. BACKGROUND

Add-on transactional systems for cloud-based database ser-
vices take different approaches, resulting in different feature
and performance trade-offs. We consider only systems where
data in each store are independent, i.e., there is no replication
among them that introduces consistency requirements.

A. Client-side two-phase commit

The Cherry Garcia approach [7] proposes a client-side li-
brary that abstracts all transaction logic, allowing programmers
to use transactions in their applications over existing cloud-
native database services. It supports basic key-value put and
get operations and requires only that the underlying systems
are able to execute atomic read and test-and-set operations,
and annotate each record with additional data, specifically,
transactional meta-data and past versions. Moreover, one of
the databases holds a coordinator table containing the state of
all transactions and must be accessible to all clients.

The client-side transaction works as follows. When started
by a client, it locally selects a globally unique identifier and a
timestamp. An update to an item is stored in a local transaction
cache. To read an item, the transaction first checks its cache.
If it is present, then it is returned; otherwise it must be read



from the data store and needs to be verified. This is necessary
because this value could be invalid if it has been updated by an
unfinished transaction. In this case, the start timestamp from
the transaction that wrote this record is used to validate the
record. The validation is done by checking the transaction state
in the coordinator table.

If the transaction is in the finished state, the value is ac-
cepted; otherwise, the starting timestamp is used to determine
the transaction state. Each transaction has a maximum amount
of time to execute, and, using the start timestamp, we are able
to determine if a transaction which wrote a record has already
exceeded said time limit. In that case, the record is reverted
to its previous version stored in the record’s meta-data. In
case the limit has not been exceeded, the read fails and the
transaction which made the read is aborted.

Transaction commit uses a two-phase commit protocol.
The main function of the first step, the prepare step, is to
check if the transaction can commit without conflicting with
other transactions. This step is done by first marking all
records in the write cache of a transaction with the transaction
id, the preparing timestamp, and the preparing state. Then,
each record is written in the data store using the test-and-
set operation. This is done sequentially using a global order,
to reduce the chance of two transactions conflicting. If even
one of these operations fails, the transaction is aborted. If all
operations are successful, then the preparation phase ends, and
the commit phase begins. In the commit step, the transaction
id is written in the coordinator table with the committed state,
marking it as committed. Then, all records written during the
prepare phase are updated with the new state.

Lastly, a transaction can be aborted directly, by invoking
the abort method, or indirectly, due to failed read or prepare.
Depending on when it was called, the abort has two different
behaviors. If the abort was called before the transaction was
preparing, then we only need to clear the cache. If the abort
was called during the prepare phase, then all written records
until the abort call must be reverted to their previous version.

ScalarDB [8] is an open source and commercially supported
implementation of the Cherry Garcia protocol with several
improvements. The first one is parallelizing the writes in the
prepare step. The second is enabling serializable transactions,
by using an extra-read or extra-write after the prepare step.

Finally, ScalarDB also provides a PostgreSQL Foreign Data
Wrapper (FDW) [13] that can scan tables using the client-
side transactional API and thus support SQL queries. Since
the protocol supports only simple put and get operations, this
allows complex analytical queries to be executed.

B. Transactions in the query engine

The TiQuE approach [9] proposes a server-side implemen-
tation of ACID transactions for SQL systems that support only
single-item atomicity. The key feature of this approach is that
it is achieved with views and rules, allowing applications to
use all SQL operations, including complex queries, in their
transactions, and achieving transparency. Briefly, each table
is replaced by a view that computes the current transactional

snapshot from a backing-store table that keeps multiple ver-
sions of data items and transactional meta-information. Write
operations on the view, such as inserts, updates, and deletes,
are captured by rules, annotated with transactional meta-data,
and redirected to the underlying table.

When a new transaction starts, an id and a starting times-
tamp are acquired and written in the log table. Then, any
operation can be issued during this transaction. The views and
rules previously created will ensure that operations performed
by a transaction will only affect said transaction. Finally, the
transaction will be committed or aborted. First, the log will
be checked for any conflicting transaction, i.e., any transaction
that was committed after the one being prepared started,
having both updated the same value. If a conflict is detected,
the transaction is aborted and the respective log entry is
marked as such. If not, the transaction commits and its log
entry is updated with a commit timestamp.

This approach can be applied to the multi-database cloud
scenario using a SQL server as a proxy that manages trans-
actional meta-data locally [10]. This allows complex SQL
statements to be executed efficiently while pushing parts of
the query to underlying data stores, if their query processing
capabilities allow. For key-value stores such as Cassandra,
this reduces to simple put and get operations. For systems
with query capabilities, such as MongoDB, this also includes
aggregations.

IIT1. HYBRID TRANSACTIONS

Existing approaches for client-side transactions propose
different trade-offs suiting different applications. It is thus
interesting to combine them so that one can execute atomic
transactions across a variety of database systems while retain-
ing support for efficient analytical and hybrid transactional-
analytical processing.

A. Challenges

The main challenge is how to delegate transactional func-
tionality from the client-side middleware layer to the server,
in SQL, as in TiQuE, in a way that it interoperates with
other operations, within the same transaction, that are directed
at different database servers and being managed directly at
the client-side. In fact, ScalarDB imposes its own schema on
database systems to store meta-data and multiple versions for
each item.

The second challenge is that ScalarDB and the Cherry
Garcia approach inherently support only elementary read and
write operations, i.e., a simple key-value data store. Therefore,
even if we are able to delegate part of the transactional
functionality to the server-side, as done by TiQuE, we need
to provide additional interfaces to allow expressing analytical
queries (i.e., complex SQL SELECT statements). Moreover,
such an interface would not make sense for native key-value
store systems, which would not be able to interpret such
queries.



B. Approach

Starting with the baseline implementation of ScalarDB, we
create a new driver that supports databases with a subset
of TiQuE. Instead of directly accessing the meta-data in the
underlying database, this driver translates the operation to its
equivalent in the TiQuE schema. To make this possible, the key
change to TiQuE is the implementation of two-phase commit,
thus separating prepare and commit phases and exposing them
as methods. The driver then calls the begin, prepare, and
commit methods in the modified TiQuE. Finally, we need to
create a new operation that allows us to send complex queries
to TiQuE.

The TiQuE driver for ScalarDB contains all standard meth-
ods from ScalarDB, such as put, get, and delete, as well as
the required methods to begin, prepare, commit, and abort a
transaction. It also contains a map linking a transaction in
ScalarDB to the respective transaction in TiQuE. This allows,
when delegating operations, to execute them in the correct
context.

With this driver, when a put is done during a ScalarDB
transaction on a TiQuE database, it is applied to the database
instead of keeping it in the transaction cache. This allows com-
plex select operations in the context of the same transaction to
observe their own updates. In this step, we implicitly start a
TiQuE transaction in case one has not yet been started within
the ScalarDB transaction. This is done lazily to maintain
maximum compatibility between these systems.

When the commit is requested by the client application, the
two phases are translated to TiQuE as follows. For the prepare
step, instead of only performing test-and-set operations on
each individual item, we call the prepare method of TiQuE. In
the commit step, we do everything like the original ScalarDB
with the main exception that we execute the commit method
in TiQuE that updates the state of the records. In addition,
we also changed ScalarDB’s abort procedure to call the abort
method in TiQuE, in addition to its default behavior.

Finally, we created a new operation in ScalarDB to execute
a complex query operation. This operation allows us to send
a SQL query directly to the underlying TiQuE database. With
these three major changes, we can use a TiQuE database with
ScalarDB.

As an example, consider an application that executes a
transaction in which it writes an item to each of two cloud
database systems and issues an analytical operation. One of
them, DB1, is using the new TiQuE driver, while the other,
DB2, uses a standard ScalarDB driver. It works as follows:

1) The application calls the middleware layer to begin a
transaction, which initializes the local state with the
global transaction id.

2) When the application writes an item to D B1, the opera-
tion is sent to the driver. The driver then starts a TiQuE
transaction in DB1, collecting a TiQuE transaction id
that is associated with the global transaction.

3) The write operation is now forwarded to DB1, where it
is inserted in the cache table.
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Fig. 1. Throughput with transactional workload.

4) When the application writes an item to D B2, the opera-
tion is simply cached locally in the middleware.
5) The application now issues a complex analytical opera-
tion. This is routed to the TiQuE driver and then to DB1.
It is executed there making use of views to observe a
current snapshot, including the previously written item in
the context of the same transaction.
6) When the application requests that the transaction com-
mits, we execute the following in parallel:
a) The TiQuE driver requests D B1 to execute the prepare
method.
b) The original driver issues each of the pending writes
to DB2 and collects responses.

7) Assuming that all responses have been positive, the
coordinator table is updated, and, asynchronously, both
databases are notified of the commit.

IV. PRELIMINARY EVALUATION

To assess the performance impact of a hybrid approach, we
compared it experimentally with the client-side approach. All
tests use two servers: One runs a PostgreSQL 12 database
server and the other runs the workload generator. The servers
are configured with an i3-4170 CPU with 8GB of RAM and
500GB of HDD storage, using Ubuntu 20.04.

A. OLTP workload

To assess the impact on transactional performance, we use
ScalarDB’s version of the YCSB benchmark [14], which is
adapted for multi-operation transactions and uses ScalarDB’s
client API. The benchmark is configured with workload F,
i.e., a read-modify workload. The workload is configured to
perform two read-modify operations per transaction, meaning
each transaction will do a read followed by write two times.
The database is populated with 1000 records and each test runs
for 30 seconds, with 5 repetitions for each configuration. We
benchmark considers 1, 10, 25, 50, 75, and 100 clients. The
baseline ScalarDB is configured for read-committed isolation,
as serializability has a significant impact on performance, and
the hybrid solution provides snapshot isolation.
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Fig. 2. Response time with the transactional workload.

The results are shown in Figures 1 and 2. They show that, on
the one hand, the hybrid approach achieves higher throughput
with a smaller number of clients, as it reduces the number of
round-trips to the database server for committing transactions.
On the other hand, the baseline ScalarDB achieves a maximum
higher throughput with a larger number of clients, as TiQuE
adds some overhead to the transaction, with the added cost
of executing the methods of begin, prepare and commit.
Of these, the commit adds the biggest overhead because of
locking. In short, the hybrid and baseline approaches for
transactional workloads offer slightly different trade-offs with
similar performance.

B. Simple OLAP workload

To assess the impact on analytical performance, we populate
the database with 10000 items containing 6 integer and 6
text columns, as commonly found in fact tables for analytical
applications. Then, we measure the response time for running
an aggregation query (i.e., a sum of one column). Again, we
use 5 repetitions for each configuration and run this benchmark
for 1, 10, 25, 50, 75, and 100 clients.

The results are shown in Figure 3. Note that there is
a discontinuity in the y-axis as there is now a very large
difference in the performance of the two alternatives. The
reason for this is that the baseline ScalarDB implementation
provides only a key-value interface and has to download all
the data to the query engine for each execution. On the other
hand, the hybrid approach keeps a transparent representation
of transactional meta-data at the server and can thus upload
the query, which executes natively.

C. Complex OLAP workload

To further test that the proposed approach can execute com-
plex analytical queries, we resorted to CH-BenCHmark [15],
which proposes a set of analytical queries similar to the
TPC-H analytical benchmark adapted to run on the TPC-
C schema. These queries include joins over multiple tables,
aggregations, and sorting operations that greatly benefit from
the ability to fully optimize them. Namely, taking advantage
of pushing down filtering operations to reduce the amount
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Fig. 3. Response time with the analytical workload.

of data being processed. Moreover, they also take advantage
of index ordering to improve the performance of joins and
aggregations. For these tests, we use the same hardware and
software configuration as the previous tests, populating the
database with data for one warehouse.

As an example, our proposal improves the performance of
Query 1, which is a simple query using only one table, from
2.9 to 0.9s. However, with the more complex Query 4 that
includes a subquery, the improvement is from 648.6 to 1.0s.

V. CONCLUSIONS

In this paper, we address the challenge of providing a client-
side transactional layer that is efficient for both operational
and analytical workloads, as well as compatible with a diver-
sity of systems. We achieve this by combining two existing
approaches, ScalarDB and TiQuE.

A preliminary evaluation shows that this has a small impact
on transactional performance. However, since with ScalarDB
and TiQuE we can send analytic queries directly to the data
store instead of using a client-side query engine like ScalarDB
does, response time for analytical workloads decreases signif-
icantly.

Although the current delegation of analytical queries re-
quires them to be sent entirely to a single database system,
it would be interesting as future work to further improve the
client-side query engine such that complex queries can span
different database systems, while parts of the query that target
the one supporting TiQuE be still accelerated.
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