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Motivation 

Multi-Record Values (MRVs) 

Selected Results 

• Transactional conflicts greatly impact the performance of operational 
database systems, especially distributed ones. 

• Numeric hotspots are one of the most common causes of such conflicts. 

• Existing solutions are limited in the concurrency allowed, adaptability to 
dynamic workloads, and/or ensuring bound invariants (e.g., 𝑥 ≥ 0).  

Structure 

Operations 

Background Workers 

Implementation Strategies 

• MRVs alleviate this problem by converting a value into multiple 
physical records through randomized splitting, allowing updates to 
execute concurrently without conflict. 

• They are dynamically adjusted to load to improve write performance 
while optimizing for read and storage overheads. They also ensure 
bound invariants, often needed in financial and logistical workloads. 

Figure 1: Structure of an MRV 𝑝𝑘𝑖 with 24 units. 

• Logically represented by a ring of size 𝑁. 
• Each MRV contains at most 𝑁 records. 
• Each record in an MRV is assigned a 

unique integer rk ∈ [0, 𝑁]. 
• lookup(pk, rk’)  – looks up the record of MRV pk with the minimum rk 

such that rk ≥ rk’, or the record with the minimum rk if none exists. 

• add(pk, δ) – adds δ to MRV pk (lookup + update). 

• sub(pk, δ) – removes δ to MRV pk. (lookup + update; if the value in the 
record is not enough, carries the remaining to the next and repeats). 

• read(pk) – materializes the value of MRV pk. 

• write(pk, v) – sets the value of MRV pk to v. 

• Adjust the number of records based on 
the workload. 

• Balance the amounts to keep the 
number of subtract lookups low. 

• Directly in the storage engine, using low-level code. 
• In the query engine, using views for reads and rules/triggers for writes. 
• At the application-level, e.g., in the database driver library. 
 

These strategies make MRVs feasible in 
SQL, NoSQL, centralized, distributed, and 
even closed-source database systems. 

 

Figure 2: MRVs adaptability with variable load increases 
between 60 and 120 seconds (2x, 3x, and 4x). MRVs without 
dynamic adjusting are also depicted (Static). 256 total MRVs. 
Target abort rate = 5%. 

 

Figure 3: Scale up in throughput of MRVs vs native single-record 
solution in various database system architectures. 
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Updates to Hotspots with Randomized Splitting 

Scan to read 
the full paper. 


