

MRVs: Enforcing Numeric Invariants in Parallel

Nuno Faria, José Pereira | nuno.f.faria@inesctec.pt, jop@di.uminho.pt | INESCTEC & University of Minho

S
IG

M
O

D
 2

0
2

3

Partially funded by project AIDA -- Adaptive, Intelligent and Distributed Assurance Platform (POCI-01-0247-FEDER-045907) co-financed
by the European Regional Development Fund (ERDF) through the Operational Program for Competitiveness and Internationalization
(COMPETE 2020) and by the Portuguese Foundation for Science and Technology (FCT) under CMU Portugal.

Motivation

Multi-Record Values (MRVs)

Selected Results

• Transactional conflicts greatly impact the performance of operational
database systems, especially distributed ones.

• Numeric hotspots are one of the most common causes of such conflicts.

• Existing solutions are limited in the concurrency allowed, adaptability to
dynamic workloads, and/or ensuring bound invariants (e.g., 𝑥 ≥ 0).

Structure

Operations

Background Workers

Implementation Strategies

• MRVs alleviate this problem by converting a value into multiple
physical records through randomized splitting, allowing updates to
execute concurrently without conflict.

• They are dynamically adjusted to load to improve write performance
while optimizing for read and storage overheads. They also ensure
bound invariants, often needed in financial and logistical workloads.

Figure 1: Structure of an MRV 𝑝𝑘𝑖 with 24 units.

• Logically represented by a ring of size 𝑁.
• Each MRV contains at most 𝑁 records.
• Each record in an MRV is assigned a

unique integer rk ∈ [0, 𝑁].
• lookup(pk, rk’) – looks up the record of MRV pk with the minimum rk

such that rk ≥ rk’, or the record with the minimum rk if none exists.

• add(pk, δ) – adds δ to MRV pk (lookup + update).

• sub(pk, δ) – removes δ to MRV pk. (lookup + update; if the value in the
record is not enough, carries the remaining to the next and repeats).

• read(pk) – materializes the value of MRV pk.

• write(pk, v) – sets the value of MRV pk to v.

• Adjust the number of records based on
the workload.

• Balance the amounts to keep the
number of subtract lookups low.

• Directly in the storage engine, using low-level code.
• In the query engine, using views for reads and rules/triggers for writes.
• At the application-level, e.g., in the database driver library.

These strategies make MRVs feasible in
SQL, NoSQL, centralized, distributed, and
even closed-source database systems.

Figure 2: MRVs adaptability with variable load increases
between 60 and 120 seconds (2x, 3x, and 4x). MRVs without
dynamic adjusting are also depicted (Static). 256 total MRVs.
Target abort rate = 5%.

Figure 3: Scale up in throughput of MRVs vs native single-record
solution in various database system architectures.

M
u

lt
i-

w
ri

te
r

S
Q

L
M

yS
Q

L
G

ro
up

 R
ep

lic
at

io
n

S
in

g
le

-w
ri

te
r

S
Q

L
P

os
tg

re
S

Q
L

S
in

g
le

-w
ri

te
r

N
o

S
Q

L
M

on
go

D
B

M

u
lt

i-
w

ri
te

r
S

Q
L

C
lo

se
d

-s
ou

rc
e

cl
ou

d
 s

ys
te

m

Updates to Hotspots with Randomized Splitting

Scan to read
the full paper.

