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Abstract
There are now multiple proposals for Conflict-free Replicated Data
Types (CRDTs) in SQL databases aimed at distributed systems. Some,
such as ElectricSQL, provide only relational tables as convergent
replicated maps, but this omits semantics that would be useful for
merging updates. Others, such as Pg_crdt, provide access to a rich
library of encapsulated column types. However, this puts merge
and query processing outside the scope of the query optimizer and
restricts the ability of an administrator to influence access paths
with materialization and indexes.

Our proposal, CRDV, overcomes this challenge by using two
layers implemented as SQL views: The first provides a replicated re-
lational table from an update history, while the second implements
varied and rich types on top of the replicated table. This allows the
definition of merge semantics, or even entire new data types, in
SQL itself, and enables global optimization of user queries together
with merge operations. Therefore, it naturally extends the scope of
query optimization and local transactions to operations on repli-
cated data, can be used to reproduce the functionality of common
CRDTs with simple SQL idioms, and results in better performance
than alternatives.
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1 Introduction
There is a renewed interest in distributed data management tech-
niques that minimize the coordination needed to execute queries
and updates, namely, for geo-replication, where partitions other-
wise lead to blocking [1, 16], and local-first software [39], that keeps
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data close to its owner to enforce ownership and improve perfor-
mance. The scope of what is possible in a distributed data processing
system without coordination has been captured by the CALM the-
orem [33] as monotonicity that, informally, means that conclusions
based on partial, locally available, information will always hold.

In practice, Conflict-free Replicated Data Types (CRDTs) [76]
provide a concrete programming paradigm as an object-oriented
library of common abstract data types such as sets, lists, or maps,
with restricted interfaces that can be replicated, concurrently up-
dated, and eventually converge to the same state. In fact, some
CRDT proposals are based on additional pragmatic assumptions,
for example, those that restrict some concurrent operations [5].

To achieve this, CRDTs take two main approaches: state-based
and operation-based [71]. The former allows each replica to update
the local state, propagate it to others, and assume a merge operation
that reconciles any two instances. This merge operation constitutes
a semi-lattice that guarantees convergence and determinism. Alter-
natively, the latter approach transmits only the operations, which
are partially ordered and executed to eventually obtain the same
state. This reduces overhead, as the state does not have to be copied,
but requires idempotency and causal delivery guarantees to ensure
consistency across different replicas.

A common example showing the applicability of convergent
replicated data is the online shopping cart problem [10], in which
customers should be able to add/remove items from it even with
network partitions. Instead of pushing divergent versions of data
for the application to reconcile, the shopping cart can be modeled
as an OR-Map [71] from product identifiers to quantities, ensuring
that the latest version is kept even when propagation to replicas is
asynchronous and that items are not inadvertently dropped with
concurrent conflicting operations (i.e., add-wins semantics). CRDTs
have also been sought in NoSQL key-value stores that lack server-
side DML and multi-operation transactions to avoid lost updates:
Concurrent clients read the same key and compute updated values
locally, which are merged when written back [2, 8, 51, 73, 81].

However, integrating CRDTs into SQL systems is challenging [42].
First, simply using CRDTs in the stored data model while offering a
query language does not ensure that the queries are actually mono-
tonic. Second, and the one that we mainly address in this paper,
encapsulated CRDTs within SQL database systems hinder the op-
portunities for global query optimization and impact performance.

In fact, current proposals follow one of two approaches. The first
embeds CRDTs as custom data types, for instance, using PostgreSQL
object-oriented extensibility [79]: A table column can thus be typed
as a CRDT, such as an OR-Set. However, this puts the internal struc-
ture and operation of the CRDT – state merge or ordered execution,
respectively, for state-based or op-based approaches, which can be
quite complex – out of the scope of the query optimizer. Others are
limited in terms of conflict-free semantics [6, 47, 89, 90], such as
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Figure 1: Conflict-free replicated data as stacked views.

providing last-writer-wins maps in the form of replicated relational
tables. Moreover, neither allows for different merge semantics in
different queries on the same data, depending on the situation,
which is desirable but still an open problem [71].

In this context, our contribution is to provide an abstraction
for convergent data that better fits mainstream SQL systems. In
detail, this means that performance-wise, the operationswithin (e.g.,
merging) and on (e.g., user queries) convergent data are expressed
in terms of relational operations and globally optimized, together,
by the query engine. In terms of programming abstraction, our goal
is that merge strategies can be expressed in SQL, thus not being
limited to either a simple map or a library of encapsulated options.

The core tenet of our approach is the definition of conflict-free
replicated data using layered views (Section 2). At the lowest level,
we show that the key issue is the efficient representation and query-
ing of causal relations to prune concurrent versions. Therefore, we
present and later evaluate the different options available in SQL sys-
tems (Section 4). At a high level, we provide a cookbook that, based
solely on relational data, can reproduce a range of typical CRDTs,
including complex generalized nested structures (Section 3). This
approach naturally and efficiently allows multiple simultaneous
conflict resolution rules for the same data, as sought but not easily
achieved by encapsulated CRDTs [71], and interoperability with
local ACID transactions at each site. The integration with cross-site
transactional guarantees is, however, not considered in this work.

As shownwith concrete examples, this architecture allows global
optimization across user queries, merge semantics of the top layer,
and replication and causal ordering of the bottom layer. A key
consequence is that, according to best practices in database systems,
the introduction of redundancy (materialization and indexing) is
deferred to a deployment option, thus allowing optimal handling
of diverse workloads. This is, to the best of our knowledge, the
first time such a possibility has been proposed for conflict-free
replication. Furthermore, we compare CRDV with state-of-the-art
implementations of CRDTs, namely, Riak KV, ElectricSQL, and
Pg_crdt, showing that our approach offers competitive performance
even with low-level implementations (Section 5).

Finally, we provide an overview of related work (Section 6) and
point out interesting research directions (Section 7). All code, scripts,
and results are available at https://github.com/nuno-faria/crdv.

2 The CRDV Approach
Programming convergent data in high-level SQL allows developers
to easily express merge semantics and operators to achieve the
best performance (e.g., by controlling materialization and index-
ing), while at the same time hiding the complexity of replication

Table 1: CRDV’s requirements support in SQL DBMSs.

DBMS Views
Triggers/

DDL triggers
Complex
Types

Async.
Rep.

PostgreSQL Yes[31] Yes[30]/Yes[24] Array/JSON[27, 28] Yes[20]
Oracle Yes[67] Yes[65]/Yes[66] Array/JSON[68, 69] Yes[64]
SQL Server Yes[56] Yes[52]/Yes[53] JSON[54] Yes[55]
MySQL Yes[63] Yes(a)[62]/No JSON[60] Yes[61]

(a) Not supported on views.

and taking advantage of existing infrastructure (e.g., asynchronous
replication). This is achieved with the architecture shown in Fig-
ure 1 with two views, Value and Present, stacked on a replicated
History table. The different layers thus separate different concerns,
namely, the lowest (History) is concerned with replication, the mid-
dle (Present) with garbage collection, and the top (Value) with merge
semantics. Using views, we avoid imposing a single materialization
strategy and allow global optimization across layers and with user
queries, in contrast to existing systems that encapsulate CRDTs as
column types [79].

Write operations are captured and transformed into Inserts to
History. This layer is the source and target of replication, eventually
being copied to and from all replicas. Therefore, it plays a simi-
lar role to the write-ahead log in a transactional system with the
key difference that it is partially ordered by Lamport’s causality
relation [44], that is, there can be concurrent unmerged writes to
the same item. The Present layer is a generic transformation that
filters out versions that no longer contribute to the final value. The
generic nature means that, to support varied and rich conflict reso-
lution rules (Section 2.4), it must provide all the latest concurrent
versions to the Value layer, i.e., operate under multi-value regis-
ter semantics [75]. To this end, each row is tagged with a vector
clock [14] to determine causality (Section 2.2). The performance of
operations on vector timestamps is thus key in CRDV. The current
Value is computed from the causal Present by relying on specialized,
user-defined, and often simple conflict resolution rules. In summary,
CRDV follows a state-based approach [71] with row granularity,
potentially having multiple versions of the same row coexisting
simultaneously and being merged according to their content.

To make CRDV transparent to the application, we assume that
the database system supports views for virtual representations of
data, as well as triggers/rules to allow write statements to be cap-
tured and modified using custom logic. Complex types such as
arrays or JSON are also desirable to model some metadata (Sec-
tion 4.1). For replicating the History layer, we assume asynchronous
replication. These features are found in all the major relational data-
base systems, as depicted in Table 1. The main limitation is with
MySQL, which does not support triggers on views, which means
that writes need to call procedures explicitly.

The remainder of this section examines how these layers work
in detail, by describing their schema, and how updates, queries, and
replication operations are processed.

2.1 Data schema
To illustrate the CRDV approach, consider an application that uses
a relational table with a primary key and some additional data. For

https://github.com/nuno-faria/crdv
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Listing 1: Rule to add a row to a replicated table.

1 CREATE RULE insert_rule AS
2 ON INSERT TO Value DO INSTEAD
3 INSERT INTO History
4 SELECT key, data, 'add', siteId(), (t).lts, (t).pts
5 FROM nextTimestamp() AS t

simplicity, we illustrate with the columns key and data, respectively,
although the discussion applies to composite keys and multiple data
columns. Other alternatives are discussed in Section 3. As such, the
schema for the Value layer only contains the columns key and data.

Present and History have a different schema from Value, storing
additional metadata. In detail, in addition to key and data, we keep
a label that states whether the row has been added or removed (i.e.,
if it is a tombstone), named op. In addition, we keep an identifier for
the originating site (site) and a logical timestamp for each operation
that captures causality [44] (lts). These are used for replication and
to ignore rows that have become obsolete. We also optionally keep
additional metadata required for the desired merge semantics, for
instance, a physical timestamp for last-writer-wins reconciliation
(pts). It should be noted that key is not unique in these layers, as
multiple concurrent versions can be stored.

2.2 Writing data
Modifications to the Value layer are redirected as Inserts of new
versions in the History layer (Figure 1). These Inserts take the pro-
vided data and complement them with metadata. Namely, whether
it represents a new value or removal (op), the site’s identifier (site),
the logical timestamp (lts), and, optionally, the physical timestamp
(pts). Each row inserted in theHistory layer is expected to eventually
be replicated to the same layer in all other replicas.

The key aspect of the History layer is managing the partial order
that might result from uncoordinated concurrent updates. For this,
a logical timestamp represented using a vector clock [14] is used,
where each element refers to the latest logical time seen at that
site when the row was created. While determining causality is
not required in state-based replication, it is needed to enable rich
conflict resolution rules in CRDV (Section 2.4). The timestamp is
computed by querying the Present layer for the current maximums
and then incrementing it for the local site, e.g., [7, 4, 1] at site 0
advances to [8, 4, 1]. This provides correct timestamps regardless of
the materialization strategy and avoids the overhead and potential
concurrency bottleneck of having a separate clock table.

Listing 1 shows a SQL rule performing the redirection of an
Insert. In detail, Inserts to the Value layer (line 2) are translated
into Inserts to the History layer (line 3), with the respective data
(lines 4 and 5). Updates and Deletes follow a similar strategy.

2.3 Filtering
Logically, the Present layer is a view of the History table that filters
only the rows in the causal present, i.e., that contribute to the visible
state, hiding much of the complexity of conflict-free replication. A
version 𝑣1 with logical time lts1 is replaced by a version 𝑣2 with
logical time lts2 if both are identified by the same key and lts1 < lts2,
which is defined as lts1 [𝑖] < lts2 [𝑖],∀𝑖 ∈ [0, nSites()). In other
words, if 𝑣1 happens before 𝑣2 (𝑣1 < 𝑣2). If 𝑣1 ≮ 𝑣2 ∧ 𝑣1 ≯ 𝑣2, the

Listing 2: Definition of the Present view in the no-mat strat-
egy. Note that this is a straightforward representation in SQL and not
necessarily optimized. vclock_lte computes ’≤’ of two logical timestamps.

1 CREATE VIEW Present AS
2 SELECT *
3 FROM History t1
4 WHERE NOT EXISTS (
5 SELECT 1
6 FROM History t2
7 WHERE t1.key = t2.key
8 AND t1.lts <> t2.lts AND vclock_lte(t1.lts, t2.lts)
9 )

versions are concurrent and, consequently, are both considered
(𝑣1 | |𝑣2). Listing 2 illustrates a definition of the Present layer. Briefly,
we consider all versions (lines 2, 3) that were not causally replaced
(lines 4-9). We refer to this strategy of constructing the Present layer
solely by querying the data in the History layer as no-mat.

However, it is wasteful to define Present strictly as a view, as we
expect only a small subset of History to affect the result. Therefore,
we seek to materialize it and devise an incremental maintenance
procedure. In Section 4.2, we describe how the same procedure also
removes data from History, avoiding unbounded growth.

Full materialization of Present (sync). In this case, Present is
defined as a table and is synchronously updated when a new local
version is created, reducing the read complexity. This is done with
a trigger on History executed within the transaction that Inserts
the new row. When materializing Present, this trigger Deletes
from it the versions that will now become obsolete (if any) and
subsequently Inserts the new version.

Partial materialization of Present (async). In some cases,
the synchronous materialization of Present may be undesirable, for
instance, due to its interaction with local isolation (Section 2.5). In
this case, Present is defined as a view that filters and combines new
rows from History, as in Listing 2, but using existing materialization.
A periodic procedure performs asynchronously the same actions
as the full materialization performs synchronously. This process is
analogous to the data storage strategy commonly found in Hybrid
Transactional Analytical Processing (HTAP) systems [70].

In short, the async approach should result in a faster response
time for writes, as the filtering operation is avoided. In contrast,
reads will have to consider both Present and History data to ensure
read-your-writes semantics. Choosing one alternative over the other
will depend on the type of workload being executed (Section 5.3.1).

2.4 Reading data
Applications in CRDV read by issuing Select statements on the
Value layer, which exposes the application schema without meta-
data. The key issue here is how concurrent versions in the causal
present are reconciled, including resolving conflicts.

Common approaches for collections where the same key can be
added and removed concurrently are add-wins (AW ) or remove-wins
(RW ). For conflicting additions on the same key, one option is to
return all conflicting values. This option, known as multi-value
register (MVR), defers the resolution to the application. However,
doing so at the application level increases development complexity
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and means that different applications might need to reimplement
the same rules. Another common approach is the last-writer-wins
(LWW ) rule, which keeps the last written value according to a
physical timestamp. Although simple to implement, it might not be
acceptable depending on the requirements. Rules can also be defined
on the basis of the conflicting values themselves. For instance,
average (Avg), maximum (Max), or minimum (Min) for numerical
values, and enable-wins (EW ) or disable-wins (DW ) for flags.

One property of CRDV is that, precisely because conflict reso-
lution rules are data processing operations, they can be expressed
directly with the query language. This provides a universal runtime
implementation for all applications and enables the query planner
to optimize these rules. The output format can also be defined in
the query language, e.g., native row format or JSON.

Furthermore, this allows us to have multiple simultaneous con-
currency semantics depending on the situation, which was until
now an open problem in CRDTs [71]. Figure 2 illustrates multi-
ple conflict resolution rules applied to a table with integer data
(Figure 2a). The data are shown in the Present layer, which selects
the latest rows from History based on the respective vector clocks.
Thus, multiple rows with the same key have concurrent timestamps.
There is an add to 𝑘1, a rmv of 𝑘2, two concurrent add and rmv to
𝑘3, and two concurrent adds to 𝑘4. The LWW view (Figure 2b) uses
a window function to rank different versions of the same key by
their physical timestamp (lines 4-6) and select the most recent (line
9). This means that 𝑘3 is excluded from the result, as the rmv is
newer, while for 𝑘4 the value considered is 40. The AW+MVR rule
(Figure 2c) excludes rmvs (line 5) and aggregates the remaining val-
ues into an array (lines 2, 3, 6). Thus, 𝑘4 is [4, 40]. The AW+Avg rule
(Figure 2d) projects the average value for elements with concurrent
adds (lines 2, 5). As a result, 𝑘4 will be projected as 4+40

2 = 22.
One thing to note is that we can create views over existing views.

For example, to improve code reusability in Figure 2, we can create
a view with the base add-wins semantics and build the MVR and
Avg rules over it. We can also expect good performance when doing
so, as the planner can optimize the query as a whole (Section 5.3.2).

2.5 Transactions
As the proposed approach is built on the client interface of a trans-
actional system, it allows a natural integration with existing ACID
concurrency control and recovery mechanisms. The key principle is
that changes to CRDV tables made in a transaction are also visible
to a remote site as a transaction. However, eventual consistency
does mean that transactions from different sites might be made
visible in different orders at different destinations.

If the Present layer is fully materialized (sync), then operations
at the same site will implicitly be isolated according to the local
concurrency control mechanisms. In contrast, the async approach
allows two local transactions that modify the same item to commit
concurrently, since they only Insert new rows into History, which
does not trigger conflicts. If we want to ensure that this mode also
follows local transactional semantics, we can keep a separate table
with the relevant keys for the stored items and modify the rule
that diverts writes to History to force the conflict on rows in such a
table, by modifying it or using Select ... For Update. Alternatively,
if available, we can also use explicit locking functions [18].

(a) Present data

key data op site lts pts
k1 1 add 1 [10, 1] (122185,1)
k2 rmv 1 [13, 1] (123447,1)
k3 3 add 1 [14, 1] (123720,1)
k3 rmv 2 [9, 2] (131233,1)
k4 4 add 1 [15, 1] (124948,1)
k4 40 add 2 [9, 3] (132198,1)

(b) Value view for LWW
1 CREATE VIEW ValueLww AS
2 SELECT key, data
3 FROM (
4 SELECT key, data, op, rank() OVER (
5 PARTITION BY key
6 ORDER BY pts DESC, site)
7 FROM Present
8 ) t
9 WHERE rank = 1 AND op = 'add'

key data
k1 1
k4 40

(c) Value view for AW +MVR
1 CREATE VIEW ValueAwMvr AS
2 SELECT key, array_agg(
3 data ORDER BY data) data
4 FROM Present
5 WHERE op = 'add'
6 GROUP BY key

key data
k1 [1]
k3 [3]
k4 [4, 40]

(d) Value view for AW + Avg
1 CREATE VIEW ValueAwAvg AS
2 SELECT key, avg(data) data
3 FROM Present
4 WHERE op = 'add'
5 GROUP BY key

key data
k1 1
k3 3
k4 22

Figure 2: Example of different conflict resolution rules ap-
plied to a table with integer data.

While CRDV operates on conflict-free data, its semantics can be
extended to support cross-site transactional guarantees. Very briefly,
write-sets can be collected with triggers and sent to a leader site to
be certified [11], replicated, and completed when acknowledgments
have been received from a majority of sites. The main challenge
concerns how the system should act when strong and eventual
transactions are executed on the same data. We believe that CRDV
may also be beneficial in this context, for instance, with resolution
rules such as strong-wins. However, the complexity of this issue
means that this topic cannot be addressed in this work, thus we
consider it an interesting future research direction (Section 7).

2.6 Schema Changes
The asynchronous logical replication offered by relational database
systems often does not support replicating DDL statements [23].
However, triggers on DDL statements are commonly available (Ta-
ble 1), allowing us to capture, process and replicate schema changes
to remote sites, similarly to how regular writes are handled.

The asynchronous nature of CRDV means that schema changes
cannot be arbitrarily accepted, as inconsistencies may emerge. For
instance, dropping a column in one site while writing to it in another.
Solutions that have addressed this issue, such as F1[72], can be used.
Briefly, an unsafe schema change – e.g., dropping a column – can be
converted into two safe ones – deactivating it and then removing it.
Only after the first change has been applied in all sites – e.g., using
a counter to keep track – can the second one be executed.
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A non-relational approach to this problem is to encode the
schema directly in the data (Section 3.3). Although CRDV already
handles conflicting changes in this case, this solution requires the
user to be knowledgeable about how the data are organized.

3 The CRDV Cookbook
The CRDV architecture assumes that the design of the relational
schema and the conflict resolution is done by developers so that it
captures the specifics of each application. In this section, we show
that this is feasible by describing how to deal with typical features
of relational schemas and how to reproduce common CRDTs.

3.1 Foreign keys
The use of foreign keys to link entities in relational data is directly
compatible with CRDV by making a data column refer to the key,
or part of the key, of another entity. However, this raises the issue
of referential integrity when merging concurrent updates [7]. As
an example, consider that 𝐵 is referenced by 𝐴 by key 𝑘 . 𝐵 could be
updated while concurrently 𝑘 is removed from 𝐴, for example, 𝐴
represents courses, 𝐵 represents students in course 𝑘 , and a student
is added to 𝐵 while concurrently the course 𝑘 is removed from
𝐴. Although this represents a conflict, the actual operations are
fundamentally done on separate structures, and thus the outcome
is always “𝐵 stopped being referenced by 𝐴”.

Depending on the requirements, we might want to ensure that
𝐵 is still referenced in these cases. In CRDV, this is achieved by
marking 𝑘 as added in𝐴 in the same transaction where 𝐵 is updated,
effectively entangling both structures. This can be done manually or
with a trigger that runs on updates to 𝐵. With this, the concurrency
rules used on 𝐴 (e.g., AW or RW ) will dictate whether or not 𝐵
remains visible. Similarly, cascading deletions can be expressed by
marking the referenced row as deleted, as appropriate.

3.2 Reproducing CRDTs
CRDTs encapsulate data representation and merge semantics. To
show that these can be expressed with CRDV, we implement com-
mon types such as [76]: registers, as single opaque values; sets, un-
ordered collections of unique values; maps, unordered collections
of key-value pairs; lists, ordered collections of values; and counters,
numeric values that can be incremented or decremented.

3.2.1 Registers. A register can be modeled as a single-row table,
hence, without a key. Concurrent updates result in conflicting ver-
sions that can be reconciled with MVR, LWW, EW, and so on. It is
likely that registers are found within maps, as described below.

3.2.2 Maps and sets. A map is a table with the appropriate key
and value, while a set is a table without data columns, only tracking
if the keys are present or have been removed. In both cases, we can
use LWW to resolve conflicts. In the case of sets, AW and RW are
also straightforward, but with maps they require that the values of
conflicting updates be themselves reconciled, e.g., using MVR.

3.2.3 Lists. Lists are modeled using the key as the index on which
the elements are sorted. The indexes must express a consistent
linear order across all sites. Taking into account two indexes 𝑙𝑖 and
𝑙 𝑗 , we must ensure that 1) 𝑙𝑖 ≠ 𝑙 𝑗 , to allow insertions between 𝑙𝑖
and 𝑙 𝑗 , and 2) if 𝑙𝑖 < 𝑙 𝑗 in one site, then 𝑙𝑖 < 𝑙 𝑗 in all sites.

𝑀𝑎

key mb_fk
M1 k1 M2

𝑀𝑏

key s_fk
M2 k1 S1
M2 k2 S2

𝑆

key
S1 e1
S1 e2
S2 e3

mb_fk

s_fk

(a) Relational approach

𝑇

key data
M1 k1 M2

M2 k1 S1
M2 k2 S2

S1 e1
S1 e2
S2 e3

(b) Generic approach

Figure 3: Example of a nested structure implemented with
two distinct approaches. Metadata columns have been omitted.

We base our index generation on the LSEQ algorithm [58], where
indexes are encoded using strings and each character is analogous to
a level in a trie. The generation algorithm supports three variations:
optimized for appends, for prepends, and for random inserts. To
guarantee that each index is globally unique, we also append the
local site’s identifier, which in turn precludes causal conflicts.

3.2.4 Counters. To model counters in CRDV, we consider a table
with key and data columns. For incrementing or decrementing, a
new version is added using, e.g., the site’s id as key, which precludes
intersite conflicts. The data column reflects the previous value of
that key (zero if not present) plus the new delta. For reading, a sum
is computed over the partial values. This strategy is based on value-
splitting techniques [12, 57], and comes with the added advantage
of enabling bounded counters [5] to be easily implemented.

3.3 Nested structures
In CRDV, nested structures, i.e., data structures comprised by other
structures, can be implemented with varying degrees of abstraction.
At the lowest level, different entities can be modeled by different
tables, with links explicitly established by foreign keys. Figure 3a
illustrates this approach with three entities, 𝑀𝑎 , 𝑀𝑏 , and 𝑆 , with
columnsmb_fk and s_fk linking𝑀𝑎 to𝑀𝑏 and𝑀𝑏 to 𝑆 , respectively.
At the highest level of abstraction, all structures can be encoded
into a single generic table, with the 𝑑𝑎𝑡𝑎 column implicitly linking
different entities. Figure 3b shows an example of a map structure
𝑀1 containing a key 𝑘1, whose data refers to map 𝑀2. In turn,
the two entries of 𝑀2 refer to sets 𝑆1 and 𝑆2, respectively. Thus,
𝑀1 = {𝑘1 : {𝑘1 : {𝑒1, 𝑒2}, 𝑘2 : {𝑒3}}}. Finally, a hybrid approach
can store different data types in distinct tables, but allow different
entities of the same type to be stored together. In Figure 3’s example,
entities𝑀𝑎 and𝑀𝑏 would be stored together in a Map table.

In all cases, the complete structure is materialized by joining the
respective conflict resolution views. Since the key is indexed, we
expect the same performance in all approaches, even though the
generic approach relies on self-joins. To coax the planner to always
use the index, we rely on Lateral joins [26], resulting in good
performance independently of the number of joins (Section 5.3.3).

While the generic approachmakes it easier to change the schema,
it expects the user to know how the data are stored in the generic
table. Furthermore, storing different types in the same table leads to
null attributes, e.g., data in sets. Thus, we consider the relational ap-
proach to be the optimal way to model nested structures in CRDV.
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Figure 4: Geometric representation of several logical times-
tamps in 𝑁 dimensions. max is the pointwise maximum of 𝐴 and 𝐵.

4 A CRDV Library
This section highlights how we use the features commonly found
in SQL database management systems to implement a proof-of-
concept library that supports the CRDV approach.

4.1 Logical timestamp encoding
We consider three distinct strategies for encoding vector times-
tamps. The decision to choose one over the others will depend on
the space and time overheads, measured in Section 5.2.

4.1.1 Relational-based. As a baseline, we consider a relational-
based strategy that uses a separate table to store the timestamps,
with each row storing the time for some site. The main advantage
of this approach is that it only requires a single index to acceler-
ate timestamp processing, independently of the number of sites.
However, it requires a join to find the timestamp of a row, and the
number of rows needed increases with the number of sites.

4.1.2 Vector-based. Another option is to use arrays or JSON to
directly encode the timestamps. The array approach implicitly maps
each site to an index, while JSON does the mapping explicitly. These
encodings avoid the need to join with an auxiliary relation but
require an index per site. A single index on lts only accelerates the
“=” operator. For the “>” or “<” operators, the comparison is usually
done from left to right, meaning [0, 1] is considered to happen
before [1, 0], while in fact they are concurrent.

4.1.3 Geometric-based. The last approach uses geometry to encode
timestamps. A logical timestamp of length 𝑁 can be plotted as a
point in 𝑁 dimensions. Taking into account another point at the
origin, vector timestamps form lines in one dimension (Figure 4a),
rectangles in two (Figure 4b), and cuboids in three (Figure 4c). With
four or more, they form hypercubes. Regardless, computing 𝐴 ≤ 𝐵

is equivalent to determining whether 𝐴 is contained in 𝐵. Likewise,
computing𝐴| |𝐵 is equivalent to computing if𝐴 is not contained in 𝐵
and 𝐵 is not contained in𝐴. Finally, determining the pointwise max
of 𝐴 and 𝐵 is equivalent to computing the minimum bounding box
of𝐴 and 𝐵. This alternative is explored, as there are several libraries
to accelerate these types of geometric queries using a single index,
commonly available in SQL database systems.

4.2 Replication and garbage collection
All data inserted in theHistory layer need to eventually be replicated
to all sites. In our implementation in PostgreSQL, this is achieved
with publications and subscriptions [21, 22], which use asynchronous
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Figure 5: Evolution of the state stored in two sites for the
same key. Only 𝑑𝑎𝑡𝑎 and 𝑙𝑡𝑠 are pictured. Present in Site 2 async refers
to the partial materialization in the Present layer.

logical replication. It guarantees that data from the same transaction
are atomically delivered to each site. Furthermore, it ensures that
missing data are replicated after a network partition.

For each site, we create a publication in the History table and
subscriptions to the remote sites. The publication only replicates
local Inserts, which means 1) a site can safely remove a row after
it has been merged to the Present layer, without having Deletes
propagating to remote sites, and 2) a site will not receive back its
own changes from others. Therefore, this provides a straightforward
solution to the garbage collection of History: In the sync mode,
local History rows are deleted in the same trigger that performs
the materialization, meaning that they are never actually stored
in this layer. In systems without these properties, one could also
keep track of update propagation and perform garbage collection
asynchronously.

Figure 5 depicts an example of how writes are processed and
replicated in the sync and async modes. In the sync mode, a write
to History ( 1○) triggers the materialization to the Present table
( 2○), as well as deletion of the entry from History, in the same
transaction. In this case, the writes at both sites (“A” and “B”) replace
the initial version (“I”). In contrast, a write in the async mode is not
materialized. Independently of mode, the writes are asynchronously
propagated to the History of the remote sites ( 3○).

The materialization of remote data, as well as local data in the
async mode, is achieved with a daemon implemented using the
pg_background extension [41]. To avoid holding locks for a pro-
longed time, writes are split into multiple batches, which can be
merged in parallel. Data originating from the same transaction are
grouped in the same batch using the xmin system column, which
identifies a transaction [25]. As with sync local writes, it deletes the
obsolete History rows alongside their materialization, atomically.

In Figure 5, the remote concurrent write in the sync mode is
placed with the existing version ( 4○). In async, the old version is
removed and the current ones are added. In no-mat, History would
keep all versions inserted and Present would never be materialized.

5 Evaluation
To experimentally evaluate CRDV, we use an implementation in
PostgreSQL, comparing it to other proposals that directly integrate
CRDTs (Section 5.1), in a cloud environment. We begin by analyz-
ing the various timestamp encoding strategies (Section 5.2). Then,
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we demonstrate how CRDV adapts to the workload (Section 5.3).
Next, we examine the overall performance of various operations
(Section 5.4). Finally, we explore CRDV’s scalability (Section 5.5).

5.1 Systems and environment
We implement the five structures enumerated in Section 3.2 with
CRDV, relying on generic History and Present tables holding all
data. Although several conflict resolution views are available, we
use LWW in the experiments. To measure the effective overhead
of CRDV, we consider SQL implementations of the same data with-
out metadata, merge semantics, or replication, labeled native. For
example, a counter is modeled as a regular integer column.

In addition to CRDV, we consider three alternatives. Electric-
SQL [47] is a synchronization layer for local-first applications, us-
ing a PostgreSQL server as the source of truth and SQLite with
JavaScript client-side. Writes are processed by triggers, which use
LWW to merge conflicts, while reads retrieve the table’s rows. We
model registers, sets, and maps similarly to CRDV. To evaluate its
performance, we execute direct reads/writes to the central server.
Pg_crdt [79] is a PostgreSQL extension that offers CRDTs by using
Automerge [9]1 – a library that implements several structures and
handles conflict resolution – storing in PostgreSQL the encapsu-
lated data. Reads/writes must be decoded/encoded by a client-side
Automerge library. It supports both LWW (default) and MVR rules.
Finally, Riak KV [80] is a distributed key-value database system that
internally implements CRDTs. Riak KV considers AW for sets and
maps, with LWW (default) and MVR rules for additional conflicts.

All tests run on AmazonWeb Services c7i.2xlarge instances (8
vCPUs, 16GBMem) with Ubuntu 22.04 LTS, unless otherwise stated.
The clients run in a separate instance from the one(s) running the
database server(s), deployed in the same zone. All instances use
100GB of gp3-class Elastic Block Storage (SSD, 500 MB/s, 10k IOPS).

The benchmarks are implemented in Go and use the appropriate
database driver for each system. Unless otherwise stated, the result
of each test is obtained by performing an average of three one-
minute runs, with the first and last three seconds of each discarded.
For the latency results, we also plot the 95th percentile (p95).

5.2 Timestamp encoding
The first tests aim to find the optimal timestamp encoding by analyz-
ing the performance of operations against 1k items with 1k versions
each (1M rows). We measure retrieving the current timestamp (Fig-
ure 6a), computing the causal present of an item (Figure 6b), and
adding a new version of some item (Figure 6c). In addition, we mea-
sure the impact on storage (Figure 6d). Each strategy (Section 4.1) is
evaluated by simulating 1, 2, 4, ..., and 16 sites. The benchmark uses
one client and one server. To encode timestamps geometrically, we
use PostgreSQL’s cube extension [29].

Startingwith the current time operation (Figure 6a), useful in both
sync and async, we observe that the array and json strategies are
generally faster than the row and cube alternatives. We also notice
that the row strategy is the most affected by the increasing number
of sites, as it must perform an aggregation over a progressively
larger number of rows, while the others only execute index scans.

1Pg_crdt also supports Yjs [35] as a backend, however, it provides fewer data types.
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Figure 6: Comparison of different timestamp encodings.

In the causal present operation (Figure 6b), useful in the async
mode,2 the response time in all alternatives increases as new sites
are added, with row being the most affected as the joins grow larger.

For the write operation (Figure 6c), useful in both modes, there
is no significant difference between the alternatives. Although the
row approach writes multiple rows, the bulk of the work in all
alternatives is spent waiting for the changes to be flushed to disk.

Finally, we observe that array has the lowest storage overhead
(Figure 6d), followed by json. The row alternative is considerably
more expensive, as it stores an additional row per site. Lastly, the
high storage of cube arises mainly from the Generalized Search Tree
(GiST) index used by the cube extension, which is considerably
larger than the regular B+Tree indexes used by the others.

In summary, we use the array encoding in our implementation, as
it combines low read response times with low storage requirements.

5.3 Adapting to the workload
The next tests evaluate key advantages of the CRDV approach. First,
we show how different materialization strategies, made possible
by the layered view architecture, impact performance in different
workloads (Section 5.3.1). Second, we demonstrate the ability en-
abled by the CRDV approach to globally optimize an application
query over the view that defines the reconciliation (Section 5.3.2).
Finally, we reveal how nested structures, typical in CRDTs, are also
feasible and optimized in the relational model (Section 5.3.3).

2In the sync mode, the causal present is already materialized.
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Figure 7: Comparison of different materialization strategies
in CRDV, based on the workload and number ofmaps.

5.3.1 Materialization Strategy. To evaluate the sync and async
modes, we use a workload with a variable ratio of reads and writes
(64 clients, one site). Reads retrieve the value of a single-key map,
while writes update it. We also evaluate high and low contention,
considering 1 and 1024 maps, respectively. Besides sync and async,
we consider the alternative that keeps all versions and does not
perform any materialization (no-mat) as a baseline. Figure 7 plots
the response time and throughput according to the read percentage.

The high contention results (1map) reveal that, with only writes,
sync exhibits a considerably higher response time, as updates are
serialized, while async is able to avoid conflicts. As the percentage
of reads increases, sync response time decreases, as reads are non-
blocking. In contrast, the async response time increases, since reads
have to process numerous versions of the same item to determine
the causal present. With predominantly reads, sync outperforms
async, as the async read plan is more complex. Overall, in high-
contention workloads, sync is superior with 80% or more reads.

With little or no contention (1024 maps), all response times
are relatively low. However, async writes are still faster, since it
bypasses the merge procedure. Overall, without contention, the
sync approach is faster with 40% or more reads.

Finally, no-mat is the slowest strategy when combining reads
and writes. This highlights the need to materialize the Present at
least periodically, to keep the cost of reads manageable.

5.3.2 Plan Optimization. The following tests demonstrate how
CRDV takes advantage of the query planner and the importance of
the database configuration to optimize queries in CRDV. To do so,
we consider an application with shopping carts – with identifier
c_id – which store products’ identifiers p_id and quantities q_id.
A LWW view for the shopping carts is also defined, similarly to
Figure 2b. Two types of queries are used, namely, “get a shopping
cart’s products” and “get the shopping carts containing at least one
product in a defined range”. These queries are evaluated using the
sync mode, however, the same optimizations apply to the async.

Listing 3: Physical plans for different CRDV queries.

1 Subquery Scan (Time: 0.080 ms)
2 WindowAgg
3 Incremental Sort
4 Index Scan on shoppingcartpresent_pkey
5 Index Cond: c_id = 𝑥

(a) WHERE cart_id = 𝑥

1 Unique (Time: 50.042 ms)
2 Subquery Scan
3 WindowAgg
4 Gather Merge
5 Sort
6 Parallel Seq Scan
7 on shoppingcartpresent
8 Filter: 𝑥 ≤ p_id ≤ 𝑦

(b) WHERE p_id BETWEEN 𝑥 AND 𝑦

1 Unique (Time: 2.266 ms)
2 Subquery Scan
3 WindowAgg
4 Sort
5 Bitmap Heap Scan
6 Bitmap Index Scan
7 on shoppingcart_p_id_idx
8 Cond: 𝑥 ≤ p_id ≤ 𝑦

(c) b) + an index on p_id
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Figure 8: CRDV’s read performance with different levels of
nesting. 𝑀 refers to the MapAwLww view.

The physical plan of the first query, shown in Listing 3a, shows
the planner pushing the selection directly to the Present table, lever-
aging the existing index (lines 4, 5) and avoiding materializing
the entire view. Meanwhile, the second query’s plan (Listing 3b)
shows the planner scanning the entire table (lines 6-8), requiring a
relatively long execution time (50ms). To improve this query, we
index p_id in the Present table. Now, the resulting physical plan
(Listing 3c) reveals that the planner commences execution by first
selecting only the rows whose products are in the required range
(lines 6-8), leading to a 22× improvement over the initial version.

This shows that we can apply to conflict-free data the same
optimization techniques as used in regular relational workloads.
With solutions relying on opaque structures, such as Pg_crdt or Riak
KV, the same optimizations are not easily achieved (Section 5.4).

5.3.3 Nested Structures. We now examine the performance of read-
ing nested structures, commonly found in practical applications of
CRDTs [38]. Unlike solutions that encapsulate nested structures,
CRDV needs to perform a join to retrieve the next level, which can
be costly if these joins are not optimized. We perform reads with
one client and one site to 100k totalmaps with 1, 2, . . . , and 10 levels
of nesting. Each level in amap links to anothermap. The read query
also materializes the complete structure as JSON. Figure 8a plots
the response time for each level, while Figure 8b shows a partial



CRDV: Conflict-free Replicated Data Views SIGMOD ’25, June 22–27, 2025, Berlin, Germany

Get Set counterDec counterGet counterInc listAdd listAppend listGet listGetAt listPrepend listRmv mapAdd mapContains mapGet mapRmv mapValue setAdd setContains setGet setRmv total
operation.str.replace('register', '')

0

1

2

3

4

5

6

rt 
* 1

00
0

crdv-sync crdv-async native pg_crdt electric riak

Get Set0
1
2
3
4
5
6

Re
sp

on
se

 ti
m

e 
(m

s) p95

(a) Register

Get Inc Dec0
1
2
3
4
5
6

Re
sp

on
se

 ti
m

e 
(m

s) p95

(b) Counter

Get Contains Add Rmv0
1
2
3
4
5
6

Re
sp

on
se

 ti
m

e 
(m

s) p95

(c) Set

Get GetAt Add Append Prepend Rmv0
1
2
3
4
5
6

Re
sp

on
se

 ti
m

e 
(m

s) p95

(d) List

Get Value Contains Add Rmv0
1
2
3
4
5
6

Re
sp

on
se

 ti
m

e 
(m

s) p95

(e) Map

Figure 9: Performance comparison between different operations in different structures, using different solutions. Get - read the
structure; GetAt - list’s element at some index; Contains - check if an element/key exists in a set/map; Value - value of some key in a map; Set - update a
register ; Inc/Dec - increment/decrement a counter; Add - add a new entry to a set/list/map or update a map’s value; Prepend/Append - insert an entry at the
start/end of a list; Rmv - remove an entry from a set/list/map. The missing structures/operations are not supported by their respective solutions.

logical plan. These results measure the optimization time (plan),
the execution time (exec), and the time seen by the client (real).

The results show that the execution time (exec) increases only
slightly when more nesting levels are added. This is due to the opti-
mization done to the plan, which incrementally joins each level with
the next, as shown in Figure 8b, taking advantage of the existing
index. Meanwhile, the planning time (plan) increases significantly
as more levels are added, being at most 6× more expensive than
the execution time. However, the actual response time seen by the
client (real) is lower than the combined plan and execution times.
This is attributed to the query caching employed by PostgreSQL,
which significantly minimizes the overall response time.

Once again, these results demonstrate how the performance of
CRDV is considerably improved by the existing query optimizer.

5.4 Operations
The next tests measure the performance of common operations on
CRDTs, using one client and one site. We evaluate both the sync
and async modes of CRDV, as well as alternatives. To generate a
large dataset, we populate each data type with 100k items, with
each set, list, and map having an initial size of 100 (∼30M rows).
Figure 9 plots the average response time for each operation.

Comparing first the sync and async modes of CRDV, we once
again conclude that reads are faster in the sync mode, especially
when retrieving entire collections, i.e., get of set/list/map; and, con-
versely, writes are faster in the async mode. The main exceptions
are the counter and list writes, which also require a read to compute
the current value and determine the correct list index, respectively.
The reads in sync mode are also similar in response time to native
and ElectricSQL, as they only perform an index scan. Likewise, the

async writes are also similar to native’s. ElectricSQL’s more expen-
sive writes stem from the triggers that perform the materialization,
which synchronously update multiple metadata tables.

Meanwhile, both Pg_crdt and Riak KV have higher read response
times. Looking at multi-item structures, such as sets, it is also visible
that retrieving a single element is just as expensive as retrieving
the entire structure (e.g., comparing Get with Contains). This is a
drawback of the opaque design, which makes it impossible to query
the internal structure directly, forcing the client to retrieve and
decode the entire structure. The writes in these systems are also
generally more expensive, as the entire object must be rewritten.
In Pg_crdt, the structure must also be retrieved first to be updated.
Likewise, rmv operations to sets and maps in Riak KV also require
an initial read to determine the causal context [82, 83].

Overall, CRDV’s sync strategy has a response time overhead of
around 30% compared to the native SQL implementation. Mean-
while, ElectricSQL, PG_crdt, and Riak KV are around 5%, 50%, and
40% slower than CRDV, respectively.

5.5 Scalability
The next series of tests study the scalability of CRDV, comparing it
with other systems. We explore the impact of hotspots on perfor-
mance (Section 5.5.1), the amount of storage required (Section 5.5.2),
the impact of each operation on the network (Section 5.5.3), the
replication performance, including with network partitions (Sec-
tion 5.5.4), and the performance of horizontal scaling (Section 5.5.5).

5.5.1 Concurrency. We start by analyzing the impact of hotspots
on scalability by executing updates to one map with a variable
number of entries – from 1 to 1024 – using 64 clients and one site.
Figures 10a and 10b plot throughput and latency, respectively.
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Figure 10: Write performance of different solutions in a vari-
able contention workload, using 64 clients.

Excluding CRDV’s async, the throughput of all purely relational
systems is low when the number of map entries is small, as writes
are sequential when targeting the same row. However, this quickly
changes with the increasing number of entries, as writes can now
access different rows, thus improving concurrency. CRDV’s async
mode is, in contrast, not affected by the number of entries, as its
lazy materialization approach avoids serialization. ElectricSQL’s
lower scalability is due to the relatively high number of operations
executed. For example, in addition to the Update in the main table,
there are four additional Updates to the metadata tables.

In contrast, the performance of Pg_crdt and Riak KV does not
improve with the increasing number of entries, with both lines
located near 0. Once more, the opaque implementation means that
updates to the same structure are serialized even when targeting
different entries. Thus, for these systems, it is recommended to split
hotspot structures into multiple distinct objects.

5.5.2 Storage. We now evaluate how the different systems scale
storage-wise. To do this, we perform two types of tests. The first
evaluates how storage in each system behaves based on the number
of elements in each structure, while the second compares the storage
overhead based on the number of sites.

Starting with the first test, we consider 100k total key-value pairs
and a variable number of maps. For example, when map size = 1,
there are 100k maps with 1 entry; when map size = 2, there are 50k
maps with 2 entries each; and so on. Figure 11 plots the storage
required based on the map size (Figure 11a), with accompanying
read (Figure 11b) and write (Figure 11c) response times, using one
client and one site. The reads retrieve an entry from a map, while
the writes update an entry (one client and one site).

Starting with CRDV and the other purely-relational systems, we
conclude that they are not impacted by how the dataset is organized.
Independently of the number of maps, they will always store 100k
total rows. Here, CRDV requires on average 2× more space than
native, while ElectricSQL requires 1.8×more than CRDV. Although
ElectricSQL materializes the data like the native implementation,
the bulk of the storage derives from its metadata tables.

For Pg_crdt and Riak KV, their storage requirements are high
when there are many different structures with a few items each,
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Figure 11: Storage usage and latency of different solutions
with 100k key-value pairs, based on the total number ofmaps.
𝑥 =1 → 100k maps of size 1, 𝑥 =2 → 50k maps of size 2, and so on.
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Figure 12: Storage usage based on the number of sites.

which is caused by the size of the metadata stored by each structure.
Conversely, with only a few structures, the storage requirements
are considerably lower compared to the relational systems. This is
the main benefit of the opaque structure implementation, as there
is no metadata stored for each entry. On the other hand, this incurs
higher read (Figure 11b) and write (Figure 11c) latencies, as the
complete object needs to be decoded and encoded, respectively.

Moving to the second test, we consider 100k single-item struc-
tures. To measure the expected overhead in a real-life scenario, we
base the data on the average row size in the TPC-C benchmark [86]
(around 210 bytes, with indexes). We test CRDV with 1 to 10 sites,
comparing it to the baseline with no metadata (native). Additionally,
we also compare against Riak KV (1 to 10 sites) and ElectricSQL
(single site). Figure 12a shows the total storage based on the number
of sites, while Figure 12b details the storage usage in CRDV.

The results in Figure 12a demonstrate that the storage of CRDV
and Riak KV increases with the number of sites, a consequence of
vector clocks. Riak KV increases at a higher rate, as it also attaches
the site identifiers.3 Pg_crdt, which follows a strategy similar to that
of Riak KV, is not evaluated since it stores all operations, making
it difficult to determine the overhead. Meanwhile, a system such

3It is worth pointing out that this allows Riak KV to store a site’s timestamp only
when it writes to it. In these tests, each site has written once to each object.
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Figure 13: Network overhead of different distributed solu-
tions, based on 100k operations performed to maps. 𝑋1 and
𝑋100 represent operations done tomaps with 1 and 100 entries, respectively.

as ElectricSQL, which operates solely under LWW, does not use
vector clocks and would therefore not be affected by the number of
sites. Overall, with one site, CRDV has an overhead of 34% over the
baseline (Figure 12b). However, most is fixed and unaffected by the
number of sites. For example, the array to store the vector clock
uses 21 bytes without any elements. For each new site, we have an
additional 16 bytes per row – to store the logical timestamp and
the respective index entry – which means the increase is only 7%.

5.5.3 Network. The following tests measure the impact of CRDV
on the network. That is, the data transferred from one site to the
client and from one site to another. We again rely on a dataset with
100k maps, using one client and two sites. For each operation type,
we execute one run until 100k total operations have been completed.
Each operation is redirected to the same site, where we monitor the
network usage. To compare with CRDV (sync), we deploy Riak KV
with two replicas [84], and Pg_crdt, deployed with its central server
(pg_crdt_remote). We also consider a local-first deployment with
Pg_crdt as the source of truth, using a SQLite database in the client
for reads and writes, and asynchronous replication to and from the
central server. The asynchronous replication from the central server
to the client can either send the full object (pg_crdt_local_state) or
only the changes (pg_crdt_local_op), simulating state and operation-
based replication, respectively.4 Figure 13 shows the total data
transferred for each operation, considering maps of size 1 and 100.

Starting with the get operation, which retrieves a map, we see
that CRDV transfers an amount of data proportional to the size, as
expected. Meanwhile, both Pg_crdt remote and Riak KV transfer a
lower amount than CRDV, which is on par with the storage results
of Figure 11a. As for the local-first solutions, the data transferred is
zero, as the client does not communicate with the central server.

Moving on to the value operation, which retrieves a single key-
value pair, it shows that the data transfer in CRDV is the same
independently of the total number of entries. In contrast, Pg_crdt
remote and Riak KV must retrieve and decode the entire object,
which explains the increased network usage with larger objects.

Finally, for the add operation, which updates one entry, we exam-
ine that the bandwidth used by Pg_crdt remote, Pg_crdt local_state,
and Riak KV increase with the size of the map, due to replicating
the entire object. Both CRDV and the operation-based version of

4In all Pg_crdt versions, when updating an object, the client only sends the changes to
the remote server instead of the entire object, to reduce the amount of data transferred.
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Figure 14: Delay and throughput over time of different dis-
tributed solutions. The network is partitioned between t=25 and t=35.

Pg_crdt transfer the same amount of data independently of the struc-
ture size. This shows that while CRDV is state-based, its network
overhead resembles operation-based solutions since it operates row
by row. However, unlike operation-based systems such as Pg_crdt’s
local_op, there is no need for idempotency or causal delivery [71].

5.5.4 Freshness. The next tests assess CRDV’s ability to promptly
process remote data while engaging with local workloads. To mea-
sure the delay between one site and the others, we assign each
client a fixed number of counters to update. With different clients
accessing different sites, each site will effectively manage different
counters. The workload consists of increments to some counter, with
periodic reads to log the current values. The delay at some site is
later determined by analyzing the logs and comparing the values
read. We use three sites and a variable number of clients, running
one 60-second run with a network partition between the sites from
second 25 to 35, to measure how the system copes with long back-
logs. CRDV (sync) uses a single merge process with a batch size of
10k. To compare, we rely on Riak KV (three sites) and the local-first
Pg_crdt deployment defined in Section 5.5.3 (operation-based; each
client has its own SQLite database)5. Figure 14 plots the delay at
one site and the combined throughput over time.

CRDV’s results show a consistent baseline delay in all loads,
caused by the latency between the sites and the merge delay of the
background worker. This means that the sites are not expected to
drift apart under normal circumstances. Even after the network par-
tition, the delay is reduced relatively quickly to normal levels. The
key attribute enabling these results is the fact that CRDV merges
data in batches, i.e., multiple rows are merged in a single trans-
action, and hence the amortized disk sync cost is virtually zero.
To cope with higher loads, the number of merge processes can be
increased.

As for Riak KV, it can consistently handle up to 16 clients. Af-
ter that, the sites become increasingly out-of-sync. With Pg_crdt,
5In Pg_crdt, the network is partitioned between the clients and the central server.
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Figure 15: Performance comparison based on the cluster size.

the clients become out-of-sync when running with just 2, as local
operations are generated faster than the remote server can handle.
Additionally, due to long replication queues, Pg_crdt runs out of
memory with 32 and 64 clients and starts to rely on swap.

In summary, CRDV consistently keeps the delay low while main-
taining a higher throughput than the competing alternatives.

5.5.5 Multiple sites. The final scalability tests evaluate CRDVbased
on the number of sites. We separately execute reads (Figure 15a)
and writes (Figure 15b) to 1M registers, using 1 to 6 sites. To guaran-
tee a sufficient load, we run 1k clients in a c7i.4xlarge instance
(16 vCPUs). To compare with CRDV, we also deploy Riak KV. In
addition to the regular fully connected topology, we test the write
workload using a circular topology (ring).

Starting with the read results (Figure 15a), both CRDV sync and
Riak KV scale linearly based on the number of sites, although Riak
KV has a significantly lower baseline. For CRDV async, its perfor-
mance increase is slightly affected by the size of the timestamps.

Regarding the write results (Figure 15b), both CRDV strategies
start with linear scalability but slow down after 4 sites. With a
fully connected topology, the replication overhead is proportional
to the number of sites since each sends data to and receives from
every other. With the circular topology (ring), both strategies are
now still efficient. However, the replication delay will increase and
the availability will depend on the ability to reconfigure the ring.
Riak KV shows a linear write scalability but a low baseline. We
noticed that the CPU usage was low, while the number of disk
operations was high, equal to the benchmark’s throughput. This
means that each write is separately synced to disk, which limits
performance. Meanwhile, PostgreSQL uses group commit to flush
multiple transactions in a single sync [19], amortizing the disk cost.

In summary, these results show that CRDV scales reads optimally,
while for writes they highlight the need to choose an appropriate
topology to reduce the impact of replication on performance.

6 Related Work
Handling Conflicts. Avoiding and handling conflicts has long

been acknowledged as key to efficient replication in database sys-
tems. Namely, Gray et al. in a seminal paper on database replica-
tion [17] propose precisely a two-tier system that defers updates

but still relies on a central system. Asynchronous replication in
SQL database systems allows the definition of reconciliation rules
for conflicting updates but does not avoid false conflicts as it does
not recognize causality. The last-writer-wins rule [85] was com-
monly adopted by eventually consistent systems to merge conflict-
ing writes and is still the main way to do it in datastores such
as DynamoDB [10] and Cassandra [43]. Moreover, Dynamo [10]
proposed a multi-value register for each data item, delegating rec-
onciliation to the application. However, they do not use a query
optimizer, as they are simple key-value stores.

Conflict-free Replicated Data Types. Much of the research on
conflict-free replication that goes beyond the basic collection struc-
tures has been framed in the context of CRDTs, namely, to model
counters while enforcing lower limits [5], to represent lists with
a variety of algorithms [58, 74, 87, 88], and to implement generic
JSON documents with nesting support [38]. As we have shown,
the flexibility of the relational model allows us to support these
structures and take advantage of the same algorithms in CRDV.

The commutative properties of CRDTs have been particularly
useful in local-first systems [39], such as collaborative text edi-
tors [36, 59, 78]. To this end, several libraries providing CRDTs
have been developed, such as Automerge [9], Yjs [35], and Diamond
Types [15]. Local-first database systems offering CRDTs have also
been created, such as OrbitDB [8] and RxDB [51]. OrbitDB stores
operations in a Merkle-Tree-based log, sorted using LWW. To read
an object, it iterates over the log until it finds the respective entry,
unlike CRDV. The RxDB CRDT plugin stores the array of opera-
tions with the respective document. Like OrbitDB, all operations are
considered while conflicting writes are deterministically handled
by selecting the one with the highest creator identifier. CRDTs have
also found their place in server-side distributed database systems,
such as Riak KV [81], Redis [73], and AntidoteDB [2], providing a
variety of data types. However, unlike CRDV, they do not offer
customizable conflict resolution rules, and the opaque values of the
data model do not allow for fine-grained projections and selections.

Other research on CRDTs has pointed to their integration directly
with the query planner [42]. M. Kleppmann further conjectures that
CRDTs can be specified as a query on a view that includes all write
operations and proposes modeling them in Datalog [37]. CRDV
tackles similar issues but targets practical scenarios, namely, using
common database features to encode conflict-free data and imple-
ment read and write paths, introducing and demonstrating the
relevance of customizable materialization to handle diverse work-
loads, and separating replication details from conflict resolution to
allow diverse data types and criteria to be easily implemented.

CRDTs in Relational Systems. There has been a push to bring
these data types to the relational model. Pg_crdt [79] stores bi-
nary blobs – representing CRDTs – in rows and relies on the Au-
tomerge or Yjs libraries. The binary representation means increased
latency due to the constant serialization/deserialization and makes
it hard to use strategies such as indexing. Another set of solutions
model the tables themselves as CRDTs, such as ElectricSQL [47],
Conflict-free Replicated Relations [90] (CRR), CR-SQLite [89], and
Dart sql_crdt [6]. All of these rely on a similar approach, i.e., tagging
each row with a timestamp and using LWW to handle conflicts, ea-
gerly materializing the relations. CRR also supports counters, but its
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Table 2: Summary of CRDV and related solutions.

Solution Data Model Interface Implementation Sync. Conflict Resolution Optimization
CRDV Relational SQL Views+Triggers State Custom (SQL) Yes
Automerge [9] Document Custom API Library (Multi-lang) Operation(a) LWW, MVR No
Yjs [35] Document Custom API Library (Multi-lang) Both(b) Highest Id No
D. Types [15] Text Custom API Library (Rust, JS) Operation - No
OrbitDB [8] Key-value Custom API Library (JS) Operation(c) LWW No
RxDB [51] Document MQL(d) Library (JS) Operation Highest Id Simple(e)

Riak KV [81] Key-value Custom API Internal (Erlang) State AW, EW, LWW, MVR No
Redis [73] Key-value Custom API Internal (C) Operation AW, LWW No
AntidoteDB [2] Key-value Custom API Internal (Erlang) Operation [A|R]W, [E|D]W, LWW, MVR No
AntidoteSQL [49] Relational AQL Library (Erlang) Operation [A|R]W, EW, LWW Simple(e)

Pg_crdt(f) [79] Relational Custom API PG Ext., Lib. (Multi-lang) Operation LWW, MVR No
ElectricSQL [47] Relational SQL Lib. (JS), Triggers+Views State LWW Partial(g)

CRR [90] Relational SQL Library (Erlang) State LWW Partial(g)

CR-SQLite [89] Relational SQL SQLite Extension State AW, LWW Partial(g)

Dart sql_crdt [6] Relational SQL Library (Dart) State LWW Partial(g)

Lasp [50] Key-value Custom API Library (Erlang) State Custom (Erlang)(h) No
(a) As documents store all changes, it also supports replicating the entire state. (b) Operation-based for inserts, state-based for deletes [34]. (c) While the synchronization is
operation-based, each operation contains the entire state. (d) MongoDB Query Language. (e) Support secondary indexes but are otherwise limited when compared to major
relational DBMSs. (f) Using Automerge as the backend. (g) Unlike CRDV, conflict resolution is not considered by the optimizer. (h) Unlike CRDV, rules must defined at build time.

implementation has not been made available. Thus, and since it has
a server-side implementation in PostgreSQL, we chose ElectricSQL
to evaluate experimentally this class of solutions. Just as CRDV,
ElectricSQL also relies on triggers to handle writes. Unlike CRDV’s
multi-layered view architecture, these solutions only consider a
limited set of structures and conflict resolution rules, do not cater
for configurable materialization, indexing, and optimization, and
rely on external components to, for example, handle replication.

High-Level Semantic Customization. Similarly to CRDV, there
are solutions based on manipulating CRDTs through a high-level
interface. AntidoteSQL [49] provides an extended subset of SQL
(AQL) interface to AntidoteDB that allows creating tables with spe-
cific merge rules, namely AW and RW for rows, handling column
conflicts with EW for flags and LWW for the rest. Additionally, it
supports counters. Unlike CRDV, it is not possible to specify cus-
tom resolution rules. Furthermore, its optimization capabilities are
limited to secondary indexes, and since it does not support a stan-
dard interface, its usage is challenging outside Erlang. Lasp [50] is
an applicational-level functional programming model that allows
describing the semantics of CRDT using a common interface. Un-
like CRDV, it is not integrated into the database, making it more
difficult to reuse across applications. More generally, other solu-
tions enable high-level customization of isolation and consistency.
For example, some systems support changing the isolation [32],
labeling operations and/or specifying invariants over the data to
select the appropriate consistency level [3, 4, 40, 45, 46, 48, 77], or
defining transactional guarantees through the query language [13].

Table 2 provides a high-level comparison between CRDV and al-
ternatives. In summary, it is the only solution that provides custom
runtime resolution rules – using a high-level declarative interface
– and allows them to be optimized together with user workloads.
CRDV’s novelty also extends to supporting custom data material-
ization strategies on conflict-free replicated data.

7 Conclusions and Future Work
Although there has been substantial work proposing new database
management systems supporting CRDTs [2, 8, 51, 80], we show
that this can be achieved in mainstream SQL database systems
through the use of widely available features, such as views to sup-
port user-defined resolution rules at runtime, and triggers/rules
and asynchronous replication to exchange and merge data.

Interestingly, our proposal allows for more flexibility in the defi-
nition of merge strategies and results in better performance, not
in spite of the old tried and tested SQL system but precisely by
exploiting its advantages: Abstraction in declarative programming
with SQL and views, global query optimization, and the ability to
fine-tune access paths with indexing and materialization. A key
detail was expressing causality [44] in the relational model by defin-
ing and benchmarking three different encodings that are amenable
to indexing and query optimization.

This work opens up interesting research directions. First, we
envision that CRDV can be extended to support cross-site ACID
guarantees, whichwould provide a framework to explore the impact
of combining strong and eventual transactions over the same data.
Second, as data processing in CRDV is done fully in the relational
model, it better supports the analysis of arbitrary queries on CRDTs
as proposed by Laddad et al. [42]. Finally, it would be interesting
to explore how the existing database features can be improved
for large-scale heterogeneous deployments, where data might be
partitioned and/or some sites might be deployed at the edge.
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