
This work is financed by National Funds through the Portuguese funding agency, FCT - Fundação
para a Ciência e a Tecnologia, within project LA/P/0063/2020. DOI 10.54499/LA/P/0063/2020

Present

k v op site lts pts
k1 1 add 1 [10,1] (123,1)

k2 rmv 1 [13,1] (125,1)
k3 3 add 1 [14,1] (132,1)
k3 rmv 2 [9,2] (130,1)
k4 4 add 1 [15,1] (129,1)
k4 40 add 2 [9,3] (132,1)

k v
k1 1
k3 3
k4 4
k4 40

k v
k1 1
k3 3
k4 22

CRDV: Conflict-free Replicated Data Views
Nuno Faria, José Pereira | nuno.f.faria@inesctec.pt, jop@di.uminho.pt | INESCTEC & University of Minho

INESC TEC &

S
IG

M
O

D
 2

0
2

5

Motivation

Conflict-free Replicated Data Views

Writing Filtering

Reading

• Conflict-free Replicated Data Types are commonly used to model distributed data,
as they guarantee convergence of replicas using expressive resolution rules.

• Due to their object-based model, adoption in distributed relational systems is not
straightforward. Current approaches include:

• Embedding blobs and using custom code to read/write – supports many types
and rules but does not integrate with the query language and optimizer.

• Modeling tables as convergent maps – compatible with the relational model but
limited in the types and rules supported, often just last-writer-wins.

• Brings convergent replicated data to the relational model using native features
such as views, rules/triggers, and asynchronous replication.

• Seamlessly integrates with the query engine and the local transactional
isolation, while supporting complex data types and conflict resolution rules.

Figure 1: CRDV architecture.

Client SELECT

I/U/D rules/
triggers

INSERT

Present

resolution

Value

filter

replication

...

History

• Writes to Value are redirected as Inserts to
History, with rules/triggers, containing the
updated data and additional metadata.

• On commit, rows are asynchronously
replicated to the other sites.

CREATE RULE update_rule AS
 ON UPDATE TO Value DO INSTEAD
 INSERT INTO History
 SELECT k, v, 'add', siteId(), t.lts, t.pts
 FROM nextTimestamp() AS t;

Figure 2: Example of an Update rule (data: k, v).

• Present removes obsolete
versions based on causality, with
vector clocks. Three options:

• View that filters History at
runtime (no-mat).

• Materialization with a table
(sync).

• View that combines recent
writes with a materialized
snapshot (async).

Selected Results

Architecture
• History – stores a log of local and remote writes, using a replicated table.

• Present – filters obsolete History rows with a view and optional materialization.

• Value – handles concurrent conflicting versions in the causal present, using
views expressing conflict resolution rules.

• Value views take the Present data
and apply conflict resolution rules.

CREATE VIEW ValueAw AS
 SELECT k, v
 FROM Present
 WHERE op = 'add';

 CREATE VIEW ValueAwAvg AS
 SELECT k, avg(v)
 FROM ValueAw
 GROUP BY k;

Figure 3: Reading in CRDV.

Figure 4: Comparison of materialization strategies.

a) Sync b) Async c) No-mat

Figure 6: Delay and throughput (3 sites).

a) CRDV b) Riak c) Pg_crdt

Figure 5: Read and write latency.

a) Reads b) Writes

